

AnyBlok / Pyramid’s documentation

Contents:

	Front Matter
	Project Homepage

	Project Status

	Installation

	Unit Test

	Dependencies

	Contributing (hackers needed!)

	Author

	Contributors

	Bugs

	MEMENTO
	Add route, view, … in pyramid config

	Get AnyBlok registry in view

	Define view which are used only if one blok is installed

	Define the name of the database

	Authentication and authorization

	JSON adapter

	AnyBlok / Pyramid framework
	anyblok_pyramid.pyramid_config

	anyblok_pyramid.adapter module

	anyblok_pyramid.scripts module

	anyblok_pyramid.security module

	Bloks
	Blok Auth

	Blok Password

	Blok Authorization

	Blok Pyramid

	Pyramid Blok
	OpenID Connect

	Pyramid
	Pyramid model

	OIDC utility

	Helper for unittest
	PyramidTestCase

	PyramidDBTestCase

	PyramidBlokTestCase

	CHANGELOG
	1.2.0 (2020-12-03)

	1.1.1 (2020-10-16)

	1.1.0 (2020-08-31)

	1.0.0 (2020-05-12)

	0.9.5 (2019-11-01)

	0.9.4 (2019-11-01)

	0.9.3 (2019-06-23)

	0.9.2 (2018-08-10)

	0.9.1 (2018-05-30)

	0.9.0 (2018-02-27)

	0.8.2 (2017-12-23)

	0.8.1 (2017-11-28)

	0.8.0 (2017-10-14)

	0.7.2 (2017-10-18)

	0.7.1 (2016-12-05)

	0.7.0 (2016-07-11)

	0.6.3 (2016-06-20)

	0.6.2 (2016-06-20)

	0.6.1 (2016-04-18)

	0.6.0 (2016-04-18)

	0.5.3 (2016-03-17)

	0.5.2 (2016-01-15)

	0.5.1 (2016-01-08)

	0.5.0 (2016-01-07)

	0.4.1 (2015-10-9)

	0.4.0 (2015-08-25)

	0.3.2 (2015-06-22)

	0.3.1 (2015-05-04)

	0.3.0 (2015-05-04)

	0.2.0 (2015-03-15)

	0.1.0 (2015-02-07)

	Mozilla Public License Version 2.0
	1. Definitions

	2. License Grants and Conditions

	3. Responsibilities

	4. Inability to Comply Due to Statute or Regulation

	5. Termination

	6. Disclaimer of Warranty

	7. Limitation of Liability

	8. Litigation

	9. Miscellaneous

	10. Versions of the License

	Exhibit A - Source Code Form License Notice

	Exhibit B - “Incompatible With Secondary Licenses” Notice

Indices and tables

	Index

	Module Index

	Search Page

Front Matter

Information about the AnyBlok / Pyramid project.

Project Homepage

AnyBlok is hosted on github [http://github.com] - the main project
page is at https://github.com/AnyBlok/AnyBlok_Pyramid. Source code is
tracked here using GIT [https://git-scm.com].

Releases and project status are available on Pypi at
http://pypi.python.org/pypi/anyblok_pyramid.

The most recent published version of this documentation should be at
http://doc.anyblok-pyramid.anyblok.org.

Project Status

AnyBlok with Pyramid is currently in beta status and is expected to be fairly
stable. Users should take care to report bugs and missing features on an as-needed
basis. It should be expected that the development version may be required
for proper implementation of recently repaired issues in between releases;

Installation

Install released versions of AnyBlok from the Python package index with
pip [http://pypi.python.org/pypi/pip] or a similar tool:

pip install anyblok_pyramid

Installation via source distribution is via the setup.py script:

python setup.py install

Installation will add the anyblok commands to the environment.

Unit Test

Run the test with nose:

pip install nose
nosetests anyblok_pyramid/tests

Dependencies

AnyBlok works with Python 3.3 and later. The install process will
ensure that AnyBlok [http://doc.anyblok.org],
Pyramid [http://pyramid.readthedocs.org/] are installed, in addition to
other dependencies. The latest version of them is strongly recommended.

Contributing (hackers needed!)

Anyblok / Pyramid is at a very early stage, feel free to fork, talk with core
dev, and spread the word!

Author

Jean-Sébastien Suzanne

Contributors

Anybox [http://anybox.fr] team:

	Georges Racinet

	Jean-Sébastien Suzanne

	Simon André

	Pierre Verkest

Sensee [http://sensee.com] team:

	Franck Bret

ZeProfile [http://zeprofile.com] team:

	Franck Bret

	Alexis Tourneux

Bugs

Bugs and feature enhancements to AnyBlok should be reported on the Issue
tracker [https://github.com/AnyBlok/Anyblok_Pyramid/issues].

MEMENTO

Anyblok / Pyramid mainly depends on:

	Python 3.3+

	AnyBlok [http://doc.anyblok.org]

	Pyramid [http://pyramid.readthedocs.org]

Add route, view, … in pyramid config

By includeme

	define the view in one file

in the file views.py:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='hello')
def say_hello(request):
 return Response('Hello %(name)s !!!' % request.matchdict)

	define the entrypoint function

in the file foo.py:

def update_pyramid_config(config):
 config.add_route('hello', '/hello/{name})
 config.scan('.views')

By blok

	define the view in one file of the blok

in the file views.py:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='hello')
def say_hello(request):
 return Response('Hello %(name)s !!!' % request.matchdict)

	add the class method pyramid_load_config

in the file foo.py:

from anyblok.blok import Blok

class MyBlok(Blok):

 ...

 @classmethod
 def pyramid_load_config(cls, config):
 config.add_route('hello', '/hello/{name}')
 config.scan(cls.__module__ + '.views')

Get AnyBlok registry in view

By default the registry load is the registry of the Configuration db_name
key.

Define a simple view:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='foo')
def bar(request):
 registry = request.anyblok.registry
 nb_installed_bloks = registry.System.Blok.query().filter_by(
 state='installed').count()
 return Response("Welcome in AnyBlok application, you have %d installed "
 "bloks" % nb_installed_bloks)

Define view which are used only if one blok is installed

See the link view and route predicated [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#adding-a-third-party-view-route-or-subscriber-predicate]

the goal of the prédicate is to get the access of the route or the view only if
the predicate condition is validated. AnyBlok / Pyramid add the predicate
installed_blok:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='foo')
def bar1(request):
 """ This is the default view """
 return Response("Welcome in AnyBlok application, you have 0 installed "
 "bloks")

@view_config(route_name='foo', installed_blok='anyblok-core')
def bar2(request):
 """ This view id call if the anyblok is installed """
 registry = request.anyblok.registry
 nb_installed_bloks = registry.System.Blok.query().filter_by(
 state='installed').count()
 return Response("Welcome in AnyBlok application, you have %d installed "
 "bloks" % nb_installed_bloks)

Note

Installed predicated detect if the registry is load, without registry,
the installated blok can no be verify.

Note

you can use the current_blok function to not write the blok name:

from anyblok_pyramid import current_blok

@view_config(route_name='foo', installed_blok=current_blok())
def bar2(request):
 """ This view id call if the anyblok is installed """
 registry = request.anyblok.registry
 nb_installed_bloks = registry.System.Blok.query().filter_by(
 state='installed').count()
 return Response("Welcome in AnyBlok application, you have %d installed "
 "bloks" % nb_installed_bloks)

Define the name of the database

The name of the database determine the registry use by the view.

By default the name of the database come from the Configuration db_name
key. But it is possible to define a callback to define the good db name.

Define an AnyBlok init function

In the setup of the package add new entry point:

setup(
 ...
 entry_points={
 ...
 'anyblok.init': ['get_db_name=package.path:add_get_db_name'],
 ...
 },
 ...
)

In the file path of the package add the method add_get_db_name:

def add_get_db_name():
 from anyblok.config import Configuration

 def get_db_name(request):
 return ``My db Name``

 @Configuration.add('plugins'):
 def update_plugins(group):
 group.set_defaults(get_db_name=get_db_name)

Define the db name in the request path

This is an example to define the good db name in function of the path of the
method.

This example work if the path id define like this:

config.add_route('one_route', '/{dbname}/foo/bar')

The definition of get_db_name is:

def add_get_db_name():
 from anyblok.config import Configuration

 def get_db_name(request):
 return request.matchdict.get(
 dbname',
 Configuration.get('db_name'))

 @Configuration.add('plugins'):
 def update_plugins(group):
 group.set_defaults(get_db_name=get_db_name)

Authentication and authorization

Authentication can be add directly in configuration with includeme.

Links to the official documentation :

	http://docs.pylonsproject.org/projects/pyramid//en/latest/tutorials/wiki2/design.html

	http://docs.pylonsproject.org/projects/pyramid//en/latest/tutorials/wiki2/authorization.html

	http://docs.pylonsproject.org/projects/pyramid//en/latest/tutorials/wiki2/authentication.html

	http://docs.pylonsproject.org/projects/pyramid//en/latest/quick_tutorial/authorization.html

	http://docs.pylonsproject.org/projects/pyramid//en/latest/quick_tutorial/authentication.html

Link to an official tutorial
If you want to replace default pyramid component by your own:

	http://docs.pylonsproject.org/projects/pyramid//en/latest/narr/security.html#creating-your-own-authentication-policy

	http://docs.pylonsproject.org/projects/pyramid//en/latest/narr/security.html#creating-your-own-authorization-policy

Add a root factory:

class RootFactory(object):

 def __init__(self, request):
 self.request = request

 __acl__ = [
 (Allow, Everyone, 'all'),
]

Add the authentication callback:

def group_finder(email, request):
 return ("all",)

Add the includeme callable:

def pyramid_security_config(config):
 # Authentication policy
 secret = Configuration.get("authn_key", "secret")
 authn_policy = AuthTktAuthenticationPolicy(secret=secret,
 callback=group_finder)
 config.set_authentication_policy(authn_policy)
 # Authorization policy
 authz_policy = ACLAuthorizationPolicy()
 config.set_authorization_policy(authz_policy)
 # Root factory: only added if set in config file (no default one)
 config.set_root_factory(RootFactory)

Add the includeme in the entry point:

setup(
 ...,
 entry_points={
 'anyblok_pyramid.includeme': [
 'pyramid_security_config=path:pyramid_security_config',
 ...
],
 },
 ...,
)

Note

Since 0.9.0 AnyBlok / Pyramid add Blok Authentication and Authorization
It is on solution to get the Auth(s) in yours applications, but not a requirement.

JSON adapter

In the case where you need to return json value you can format the data with:

	Define an adapter for the python type:

def datetime_adapter(obj, request):
 return obj.isoformat()

	Add the adapter at the pyramid configuration:

def declare_json_data_adapter(config):
 from pyramid.renderers import JSON
 json_renderer = JSON()
 json_renderer.add_adapter(datetime, datetime_adapter)
 config.add_renderer('json', json_renderer)

	Add the includeme:

setup(
 ...,
 entry_points={
 'anyblok_pyramid.includeme': [
 'json_adapter=path:declare_json_data_adapter',
 ...
],
 },
 ...,
)

Note

Since 0.7.2, Some adapter have already add in the module anyblok_pyramid.adapter.

from anyblok_pyramid.adapter import datetime_adapter
from pyramid.renderers import JSON
json_renderer = JSON()
json_renderer.add_adapter(datetime, datetime_adapter)
config.add_renderer('json', json_renderer)

AnyBlok / Pyramid framework

anyblok_pyramid.pyramid_config

	
class anyblok_pyramid.pyramid_config.Configurator(*args, **kwargs)

	Bases: pyramid.config.Configurator

Overwrite the Pyramid Configurator

	
default_setting()

	Call all the entry point anyblok_pyramid.settings to update
the argument setting

the callable need to have one parametter, it is a dict:

def settings_callable(setting):
 ...

We add the entry point by the setup file:

setup(
 ...,
 entry_points={
 'anyblok_pyramid.settings': [
 settings_callable=path:settings_callable,
 ...
],
 },
 ...,
)

	
include_from_entry_point()

	Call all the entry point anyblok_pyramid.includeme to update
the pyramid configuration

the callable need to have one parametter(the instance of
Configurator class, self):

def config_callable(config):
 config.include(...)

We add the entry point by the setup file:

setup(
 ...,
 entry_points={
 'anyblok_pyramid.includeme': [
 config_callable=path:config_callable,
 ...
],
 },
 ...,
)

	
load_config_bloks()

	loop on each blok, keep the order of the blok to load the
pyramid config. The blok must declare the meth
pyramid_load_config:

def pyramid_load_config(config):
 config.add_route('hello', '/hello/{name}/')
 ...

	
class anyblok_pyramid.pyramid_config.AnyBlokRequest(request)

	Bases: object

Add anyblok properties in the request

request.anyblok

	
registry

	Add the property registry

registry = request.anyblok.registry

Note

The db_name must be defined

	
class anyblok_pyramid.pyramid_config.InstalledBlokPredicate(blok_name, config)

	Bases: object

Predicate installed_blok

pyramid_config.settings

	
anyblok_pyramid.pyramid_config.pyramid_settings(settings)

	Add in settings the default value for pyramid configuration

	Parameters

	settings – dict of the existing settings

pyramid_config.includeme

	
anyblok_pyramid.pyramid_config.static_paths(config)

	Pyramid includeme, add the static path of the blok

	Parameters

	config – Pyramid configurator instance

anyblok_pyramid.adapter module

	
anyblok_pyramid.adapter.datetime_adapter(obj, request)

	Format the fields.DateTime to return String

If the datetime hasn’t any timezone, force the timezone by
the server timezone

from pyramid.renderers import JSON
from datetime import datetime
json_renderer = JSON()
json_renderer.add_adapter(datetime, datetime_adapter)
config.add_renderer('json', json_renderer)

	Parameters

	obj – datetime obj

	Return type

	str, isoformat datetime

	
anyblok_pyramid.adapter.date_adapter(obj, request)

	Format the fields.Date to return String

from pyramid.renderers import JSON
from datetime import date
json_renderer = JSON()
json_renderer.add_adapter(date, date_adapter)
config.add_renderer('json', json_renderer)

	Parameters

	obj – datetime obj

	Return type

	str, isoformat datetime

	
anyblok_pyramid.adapter.uuid_adapter(obj, request)

	Format the fields.UUID to return String

from pyramid.renderers import JSON
from uuid import UUID
json_renderer = JSON()
json_renderer.add_adapter(UUID, uuid_adapter)
config.add_renderer('json', json_renderer)

	Parameters

	obj – uuid obj

	Return type

	str

	
anyblok_pyramid.adapter.bytes_adapter(obj, request)

	Format the fields.Binary to return String

from pyramid.renderers import JSON
json_renderer = JSON()
json_renderer.add_adapter(bytes, bytes_adapter)
config.add_renderer('json', json_renderer)

	Parameters

	obj – bytes

	Return type

	str

	
anyblok_pyramid.adapter.decimal_adapter(obj, request)

	Format the fields.Decimal to return String

from pyramid.renderers import JSON
json_renderer = JSON()
json_renderer.add_adapter(Decimal, decimal_adapter)
config.add_renderer('json', json_renderer)

	Parameters

	obj – Decimal

	Return type

	str

anyblok_pyramid.scripts module

	
anyblok_pyramid.scripts.wsgi()

	Simple Pyramid wsgi server for development purpose

	
anyblok_pyramid.scripts.gunicorn_wsgi()

	console script function to run anyblok / pyramid with gunicorn

anyblok_pyramid.security module

	
anyblok_pyramid.security.group_finder(userid, request)

	Return groups from user ID

	Parameters

	
	userid – the user id (login)

	request – request from pyramid

	
anyblok_pyramid.security.check_user(userid, password, request)

	Return groups from user ID

	Parameters

	
	userid – the user id (login)

	request – request from pyramid

	
anyblok_pyramid.security.AnyBlokResourceFactory(resource)

	Return a factory to get ACL in function of the resource

The factory use the method Pyramid.get_acl to define the
real ACL, if the user is not authenticated, the access is denied

Pyramid defined hooks to connect any User model

	Parameters

	resource – str, resource’s name

	Return type

	class, inherit RootFactory, with ACL in function
of resource

	
class anyblok_pyramid.security.RootFactory(request)

	This RootFactory need to be used with AnyBlokResourceFactory

The goal of the root factory is to add the anyblok registry in the request
for AnyBlokResourceFactory

Bloks

Blok Auth

	
class anyblok_pyramid.bloks.auth.Auth(registry)

	Bases: anyblok.blok.Blok

	
author = 'Jean-Sébastien Suzanne'

	

	
conditional_by = []

	

	
conflicting_by = []

	

	
classmethod import_declaration_module()

	Do the python import for the Declaration of the model or other

	
name = 'auth'

	

	
optional_by = []

	

	
classmethod reload_declaration_module(reload)

	

	
required = ['anyblok-core', 'pyramid']

	

	
required_by = ['auth-password', 'authorization', 'user-identity']

	

	
version = '0.1.0'

	

How to use it

This blok define a User model and add the basics of Pyramid Authentication
and Authorization policy.
It is required by the ‘password’ and ‘authorization’ bloks.
Used alone it adds :

	Pyramid.User and Pyramid.Role models

	login / logout extendable views (That will throw an exception until
you require ‘password’ and ‘authorization’ bloks into your project.)

Basically you can:

	Create a new user:

user = registry.Pyramid.User.insert(login='jssuzanne')
user.login # jssuzanne

	Add a role to the created user:

role = registry.Pyramid.Role.insert(
 name='admin',
 label='Administrator'
)
user.roles.append(role)

user.roles # [<Model.Pyramid.Role(children=[], label='Administrator', name='admin', parents=<not loaded>, users=<Model.Pyramid.User len(1)>)>]
role.users # [<Model.Pyramid.User(login='jssuzanne', roles=<Model.Pyramid.Role len(1)>)>]

	Check a permission for a user to use a resource:

from anyblok_pyramid.security import AnyBlokResourceFactory

@view_config(
 route_name='my_view',
 factory=AnyBlokResourceFactory('my_resource')
 permission='my_permission'
)
def my_view(request):
 return Response('Ok I have the permission')

Warning

Remember that until you had credential behaviours, the ‘login’ view from
‘auth.views’ will raise an ‘HTTPUnauthorized’ exception.

User

	
class anyblok_pyramid.bloks.auth.user.User

	Bases: object

User declaration need for Auth

AnyBlok registration:

	Type: Model

	Registry name: Model.Pyramid.User

	Tablename: pyramid_user

	Fields

	

	login

	
	Type - anyblok.column.String

	primary_key - True

	nullable - False

	default - anyblok.column.NoDefaultValue

	size - 64

	
classmethod check_acl(login, resource, type_)

	Overwrite the method to return the ACL for the resource and user

	Parameters

	
	login – str, login of the user

	resource – str, name of the resource

	type – str, name of the action

	
classmethod check_login(login=None, password=None, **kwargs)

	Check login / password

This method raise an exception, because any credential
is stored in this bloks

Warning

This method must be overwriting by anycredential blok

	Parameters

	
	login – str, the login attribute of the user

	password – str

	kwargs – any options need to validate credential

	
classmethod get_acl(login, resource, params=None)

	Retun the ACL for a ressource and a user

Auth, does not implement any rule to compute ACL,
This method allow all user to use the resource ask
by controllers.

For other configuration, this method must be overwrite

	Parameters

	
	login – str, login attribute of the user

	resource – str, name of a resource

	params – all options need to compute ACL

	
classmethod get_login_location_to(login, request)

	Return the default path after the login

	
classmethod get_logout_location_to(request)

	Return the default path after the logout

	
classmethod get_roles(login)

	Return the roles of an user

	Parameters

	login – str, login attribute of the user

	Return type

	list of str (name of the roles)

	
login = <anyblok.column.String object>

	

Role

	
class anyblok_pyramid.bloks.auth.role.Role

	Bases: object

Role, allow to group some authorization for an user

AnyBlok registration:

	Type: Model

	Registry name: Model.Pyramid.Role

	Tablename: pyramid_role

	Fields

	

	name

	
	Type - anyblok.column.String

	primary_key - True

	nullable - False

	default - anyblok.column.NoDefaultValue

	size - 64

	label

	
	Type - anyblok.column.String

	nullable - False

	default - anyblok.column.NoDefaultValue

	size - 64

	children

	
	Type - anyblok.relationship.Many2Many

	backref - 'parents'

	model - Model.Pyramid.Role

	remote_columns - None

	m2m_remote_columns - None

	local_columns - None

	m2m_local_columns - None

	compute_join - False

	users

	
	Type - anyblok.relationship.Many2Many

	backref - 'roles'

	model - Model.Pyramid.User

	remote_columns - None

	m2m_remote_columns - None

	local_columns - None

	m2m_local_columns - None

	compute_join - False

	roles_name

	
	Type - anyblok.field.Function

	fget - 'get_all_roles_name'

	
classmethod before_update_orm_event(mapper, connection, target)

	Check if the role has not any cyclical dependencies

	
children = <anyblok.relationship.Many2Many object>

	

	
get_all_roles_name()

	Return all the name of the roles self and dependencies

	
label = <anyblok.column.String object>

	

	
name = <anyblok.column.String object>

	

	
roles_name = <anyblok.field.Function object>

	

	
users = <anyblok.relationship.Many2Many object>

	

Views

Define views for login and logout. Those views are not automatically applied
to your project.
You must declare the route to use them in the pyramid_load_config method of
your project blok.

First import them in your blok definition __init__.py file:

from anyblok_pyramid.bloks.auth.views import login, logout

Then set route path in pyramid_load_config method:

	def pyramid_load_config(cls, config):

	config.add_route(‘login’, ‘/login’, request_method=’POST’)
config.add_view(view=login, route_name=’login’, renderer=”JSON”)
config.add_route(‘logout’, ‘/logout’, request_method=’POST’)
config.add_view(view=logout, route_name=’logout’)

	
anyblok_pyramid.bloks.auth.views.login(request)

	Default view to login a user

	
anyblok_pyramid.bloks.auth.views.logout(request)

	Default view to logout a user

Configuration

Define the authentification / authorization policies, This depend on the
options defined in global configuration.

Exceptions

	
exception anyblok_pyramid.bloks.auth.exceptions.RecursionRoleError

	Simple exception to check if the roles is cyclic

Blok Password

	
class anyblok_pyramid.bloks.password.Password(registry)

	Bases: anyblok.blok.Blok

	
author = 'Jean-Sébastien Suzanne'

	

	
conditional_by = []

	

	
conflicting_by = []

	

	
classmethod import_declaration_module()

	Do the python import for the Declaration of the model or other

	
name = 'auth-password'

	

	
optional_by = []

	

	
classmethod reload_declaration_module(reload)

	

	
required = ['auth']

	

	
required_by = []

	

	
version = '0.1.0'

	

How to use it

This Blok add Pyramid.CredentialStore model, a simple login / password table.
You can not add credential for an unexisting user because one foreign key
constraint is defined between both.

	Before all you must create a new user:

user = registry.Pyramid.User.insert(login='jssuzanne')

	Then define a credential for this user:

user_credential = registry.Pyramid.CredentialStore.insert(
 login=user.login,
 password='secret password',
)

	At this point you can check if a given password is the good one:

user_credential.password == "not the good one" # False
user_credential.password == "secret password" # True

	You can also use ‘registry.Pyramid.User.check_login’ method to check that a password
and a login match:

registry.Pyramid.User.check_login(login='jssuzanne', password='a bad one') # Will raise an HTTPUnauthorized exception
registry.Pyramid.User.check_login(login='jssuzanne', password='secret password') # 'jssuzanne'

Note

The password use the Password column, the value is an encrypted string
in database and can not be revealed during the execution of the application,
you can only compare it.

User

	
class anyblok_pyramid.bloks.password.user.CredentialStore

	Bases: object

Simple login / password table

AnyBlok registration:

	Type: Model

	Registry name: Model.Pyramid.CredentialStore

	Tablename: pyramid_credentialstore

	Fields

	

	login

	
	Type - anyblok.column.String

	primary_key - True

	nullable - False

	foreign_key - Model.Pyramid.User => login

	default - anyblok.column.NoDefaultValue

	size - 64

	password

	
	Type - anyblok.column.Password

	nullable - False

	default - anyblok.column.NoDefaultValue

	size - 64

	
login = <anyblok.column.String object>

	

	
password = <anyblok.column.Password object>

	

	
class anyblok_pyramid.bloks.password.user.User

	Bases: object

AnyBlok registration:

	Type: Model

	Registry name: Model.Pyramid.User

	Tablename: pyramid_user

	
classmethod check_login(login=None, password=None, **kwargs)

	Overwrite the initial method to check if the given login match with
an existing user that has the same password.

	Parameters

	
	login – str

	password – str

	Exception

	HTTPUnauthorized

Blok Authorization

	
class anyblok_pyramid.bloks.authorization.Authorization(registry)

	Bases: anyblok.blok.Blok

	
author = 'Jean-Sébastien Suzanne'

	

	
conditional_by = []

	

	
conflicting_by = []

	

	
classmethod import_declaration_module()

	Do the python import for the Declaration of the model or other

	
name = 'authorization'

	

	
optional_by = []

	

	
classmethod reload_declaration_module(reload)

	

	
required = ['auth']

	

	
required_by = []

	

	
version = '0.1.0'

	

How to use it

This blok helps defining authorization for User or Role on a resource or
model.

	Create an user:

user = registry.Pyramid.User.insert(login='jssuzanne')

	Add an authorization for the user to access a Pyramid resource:

registry.Pyramid.Authorization.insert(
 resource='something',
 user=user,
 perm_create=dict(matched=True),
 perm_read=dict(matched=True),
 perm_update=dict(matched=True),
 perm_delete=dict(matched=True)
)

registry.Pyramid.Authorization.get_acl('jssuzanne', 'something')
[
(Allow, 'jssuzanne', ['create', 'delete', 'read', 'update']),
(Deny, 'jssuzanne', ALL_PERMISSIONS),
]

	An user can have roles, this way you can define an authorization for a role
and all users that have this role will be authorized:

role = registry.Pyramid.Role.insert(
 name='admin',
 label='Administrator'
)
user.roles.append(role)

registry.Pyramid.Authorization.insert(
 resource='otherthing',
 role=role,
 perm_create=dict(matched=True),
 perm_read=dict(matched=True),
 perm_update=dict(matched=True),
 perm_delete=dict(matched=True)
)

registry.Pyramid.Authorization.get_acl('jssuzanne', 'otherthing')
[
(Allow, 'jssuzanne', ['create', 'delete', 'read', 'update']),
(Deny, 'jssuzanne', ALL_PERMISSIONS),
]

The permission is stored in a Json column, the permissions can be CRUD
or any other one that is defined.

Each permission can defined three keys:

	condition: Query.filter_condition, if it’s empty then the condition is marked as True

	matched: If condition is True, the entry indicate the value (default None)

	unmatched: If condition is False, the entry indicate the value (default None)

matched and unmatched can have three values:

	True: Add the permission in Allow list,

	False: Add the permission in the Deny list,

	None: Do nothing, because this rule can not Allow or Deny

User

	
class anyblok_pyramid.bloks.authorization.user.User

	Bases: object

AnyBlok registration:

	Type: Model

	Registry name: Model.Pyramid.User

	Tablename: pyramid_user

	
classmethod check_acl(login, resource, type_)

	Overwrite the method to return the ACL for the resource and user

	Parameters

	
	login – str, login of the user

	resource – str, name of the resource

	type – str, name of the action

	
classmethod get_acl(login, resource, params=None)

	Overwrite the method to return the ACL for the resource and user

	Parameters

	
	login – str, login of the user

	resource – str, name of the resource

Authorization

	
class anyblok_pyramid.bloks.authorization.authorization.Authorization

	Bases: object

A model to store autorization rules (permissions for users against an
Anyblok model or a Pyramid resource)

AnyBlok registration:

	Type: Model

	Registry name: Model.Pyramid.Authorization

	Tablename: pyramid_authorization

	Fields

	

	id

	
	Type - anyblok.column.Integer

	primary_key - True

	autoincrement - True

	default - anyblok.column.NoDefaultValue

	code

	
	Type - anyblok.column.String

	nullable - True

	unique - True

	default - anyblok.column.NoDefaultValue

	size - 256

	order

	
	Type - anyblok.column.Integer

	nullable - False

	default - 100

	resource

	
	Type - anyblok.column.String

	default - anyblok.column.NoDefaultValue

	size - 64

	model

	
	Type - anyblok.column.String

	foreign_key - Model.System.Model => name

	default - anyblok.column.NoDefaultValue

	size - 256

	primary_keys

	
	Type - anyblok.column.Json

	filter

	
	Type - anyblok.column.Json

	role

	
	Type - anyblok.relationship.Many2One

	model - Model.Pyramid.Role

	index - False

	login

	
	Type - anyblok.column.String

	foreign_key - Model.Pyramid.User => login

	default - anyblok.column.NoDefaultValue

	size - 64

	user

	
	Type - anyblok.relationship.Many2One

	model - Model.Pyramid.User

	index - False

	perms

	
	Type - anyblok.column.Json

	perm_create

	
	Type - anyblok.field.JsonRelated

	json_column - 'perms'

	keys - 'create'

	perm_read

	
	Type - anyblok.field.JsonRelated

	json_column - 'perms'

	keys - 'read'

	perm_update

	
	Type - anyblok.field.JsonRelated

	json_column - 'perms'

	keys - 'update'

	perm_delete

	
	Type - anyblok.field.JsonRelated

	json_column - 'perms'

	keys - 'delete'

	
classmethod before_insert_orm_event(mapper, connection, target)

	

	
classmethod before_update_orm_event(mapper, connection, target)

	

	
classmethod check_acl(login, resource, type_)

	Return the Pyramid ACL in function of the resource and user

	Parameters

	
	login – str, login of the user

	resource – str, name of the resource

	type – str, name of the action

	
check_validity()

	When creating or updating a User.Authorization, check that all rules
objects exists or return an AuthorizationValidationException

	Exception

	AuthorizationValidationException

	
code = <anyblok.column.String object>

	

	
classmethod ensure_exists(code, **kwargs)

	Ensure role’s authorization is present

	Parameters

	
	code – String, authorization code.

	kwargs – authorization fields

	
filter = <anyblok.column.Json object>

	

	
classmethod get_acl(login, resource, params=None)

	Return the Pyramid ACL in function of the resource and user

	Parameters

	
	login – str, login of the user

	resource – str, name of the resource

	
classmethod get_acl_filter_model()

	Return the Model to use to check the permission

	
id = <anyblok.column.Integer object>

	

	
login = <anyblok.column.String object>

	

	
model = <anyblok.column.String object>

	

	
order = <anyblok.column.Integer object>

	

	
perm_create = <anyblok.field.JsonRelated object>

	

	
perm_delete = <anyblok.field.JsonRelated object>

	

	
perm_read = <anyblok.field.JsonRelated object>

	

	
perm_update = <anyblok.field.JsonRelated object>

	

	
perms = <anyblok.column.Json object>

	

	
primary_keys = <anyblok.column.Json object>

	

	
resource = <anyblok.column.String object>

	

	
role = <anyblok.relationship.Many2One object>

	

	
user = <anyblok.relationship.Many2One object>

	

Exceptions

	
class anyblok_pyramid.bloks.authorization.exceptions.AuthorizationValidationException

	Bases: Exception

Simple exception when Authorization entry is wrong

Blok Pyramid

	
class anyblok_pyramid.bloks.pyramid.Pyramid(registry)

	Bases: anyblok.blok.Blok

	
author = 'Jean-Sébastien Suzanne'

	

	
conditional_by = []

	

	
conflicting_by = []

	

	
classmethod import_declaration_module()

	Do the python import for the Declaration of the model or other

	
name = 'pyramid'

	

	
optional_by = []

	

	
classmethod pyramid_load_config(config)

	

	
classmethod reload_declaration_module(reload)

	

	
required = ['anyblok-core']

	

	
required_by = ['auth']

	

	
version = '0.1.0'

	

Pyramid Blok

OpenID Connect

This blok provide an integration with oic [https://pypi.org/project/oic/]
an OpenID Connect [https://openid.net/specs/openid-connect-core-1_0.htm]
library, to make your service an Relying Party (not a provider).

The api documentation.

Requirements

	install OIDC’s extra requirements:

pip install anyblok_pyramid[oidc]

	confiugre a server session management (we suggest to use
anyblok_pyramid_beaker [https://pypi.org/project/anyblok_pyramid_beaker/]

Configuration

Following settings are available:

--oidc-provider-issuer OIDC_PROVIDER_ISSUER
 he OIDC Provider urls (ie: https://gitlab.com)
--oidc-relying-party-callback OIDC_RELYING_PARTY_CALLBACK
 The Relaying Party callback, once the user is
 authenticate on the OIDC provider he will be redirect
 to that uri to the RP service (ie:
 http://localhost:8080/callback). In general this value
 is also configured in your OIDC provider to avoid
 redirection issues.
--oidc-relying-party-client-id OIDC_RELYING_PARTY_CLIENT_ID
 The client id to authenticate the relying party (this
 application) to the OIDC provider. This information
 should be provide by your OIDC provider.
--oidc-relying-party-secret-id OIDC_RELYING_PARTY_SECRET_ID
 The secret id to authenticate the relying party (this
 application) to the OIDC provider. This information
 should be provide by your OIDC provider.
--oidc-scope OIDC_SCOPE
 Specify what access privileges are being requested for
 Access Tokens. `cf Requesting claims using scope
 values <https://openid.net/specs/openid-connect-
 core-1_0.html#ScopeClaims`_. a list of claims
 usingcoma separator.
--oidc-userinfo-field OIDC_USERINFO_FIELD
 Specify which field to use from the response of the
 OIDC provider `userinfo endpoint
 <https://openid.net/specs/openid-connect-
 core-1_0.html#UserInfoResponse>`_. To make sure it's a
 known user

Pyramid

Pyramid model

	
class anyblok_pyramid.bloks.pyramid.model.Pyramid

	Bases: object

AnyBlok registration:

	Type: Model

	Registry name: Model.Pyramid

	Tablename: pyramid

	
classmethod check_acl(login, resource, type_)

	Retun True if user is allowed to make action type
of the resource

This method must be ober writting by the auth blok

	Parameters

	
	login – str, login attribute of the user

	resource – str, name of a resource

	type – str, name of the action

	params – all options need to compute ACL

	
classmethod check_login(**kwargs)

	Check login / password

This method raise an exception, because any credential
is stored in this bloks

Warning

This method must be overwriting by anycredential blok

	Parameters

	kwargs – any options need to validate credential

	
classmethod check_user_exists(login)

	

	
classmethod format_login_params(request)

	Return the login and password from query

By default the query come from json_body and are named
login and password

If the entries come from another place, this method must be overwrite
:param request: the request from the controllers

	
classmethod get_acl(login, resource, params=None)

	Retun the ACL for a ressource and a user

Auth, does not implement any rule to compute ACL,
This method allow all user to use the resource ask
by controllers.

For other configuration, this method must be overwrite

This method must be ober writting by the auth blok

	Parameters

	
	login – str, login attribute of the user

	resource – str, name of a resource

	params – all options need to compute ACL

	
classmethod get_roles(login)

	Return the roles of an user

This method must be ober writting by the auth blok

	Parameters

	login – str, login attribute of the user

	Return type

	list of str (name of the roles)

	
get_user(user_id)

	Cached _get_user results in order to use it by
restrict_query_by_user decorators. Invalidate
cache has to be implemented by user who use it

Cached classmethod with size=128

	
classmethod restrict_query_by_user(query, user_code)

	Call registered decorated method (by
from anyblok_pyramid.bloks.pyramid.restrict.restrict_query_by_user)
to add filters on current query according the selected model.

	Parameters

	query – A query object which you have to add filters

	User_code

	User primary key value used to retreive users.

Note

This method is using get_user which cached user instance, you
have to manage or mind to cache invalidation while using this
method.

	
class anyblok_pyramid.bloks.pyramid.restrict.RestrictQueryByUserIdPlugin(registry)

	Bases: anyblok.model.plugins.ModelPluginBase

An AnyBlok plugin that helps to add extra filters on queries according
the current user

	
transform_base_attribute(attr, method, namespace, base, transformation_properties, new_type_properties)

	Find restricted methods in the base to save the
namespace and the method in the registry
:param attr: attribute name
:param method: method pointer of the attribute
:param namespace: the namespace of the model
:param base: One of the base of the model
:param transformation_properties: the properties of the model
:param new_type_properties: param to add in a new base if need

	
anyblok_pyramid.bloks.pyramid.restrict.restrict_query_by_user()

	

OIDC utility

Helper for unittest

For unittest, classes are available to offer some fonctionnalities

PyramidTestCase

from anyblok_pyramid.tests.testcase import PyramidTestCase

	
class anyblok_pyramid.tests.testcase.PyramidTestCase

	Bases: object

	
init_web_server()

	

	
setUp()

	

	
classmethod setUpClass()

	

PyramidDBTestCase

Warning

this testcase destroys the test database for each unittest

	
class anyblok_pyramid.tests.testcase.PyramidDBTestCase(methodName='runTest')

	Bases: anyblok_pyramid.testing.PyramidTestCase, anyblok.testing.DBTestCase

	
init_registry_with_bloks(*args, **kwargs)

	call a function to filled the blok manager with new model and
bloks to install

	Parameters

	
	bloks – list of blok’s names

	function – function to call

	kwargs – kwargs for the function

	Return type

	registry instance

PyramidBlokTestCase

	
class anyblok_pyramid.tests.testcase.PyramidBlokTestCase(methodName='runTest')

	Bases: anyblok_pyramid.testing.PyramidTestCase, anyblok.testing.BlokTestCase

	
webserver

	

CHANGELOG

1.2.0 (2020-12-03)

	Added restrict_query_by_user decorator in order to apply query filters
related to a given user

	Added utilities to setup roles and authorizations

1.1.1 (2020-10-16)

	Fixed the size of the fields model, because they have a
foreign key to the model Model.System.Model on the field
name. The next version of AnyBlok check that the size are the same

1.1.0 (2020-08-31)

	Added IODC by Pierre Verkest <pierreverkest84@gmail.com>

	Added enum_adapter for enum Column

	Allow to set HttpOnly cookie in pyramid authkt configuration

1.0.0 (2020-05-12)

	Added pyramid blok, used to do a better isolation

	Created a new adapter for timedelta objects. It can parametrized using
the new timedelta_adapter_factory and TimedeltaModes enumeration

	Removed Python 3.4 capability

	Removed Python 3.5 capability

	Refactored unittest, replaced nose by pytest

0.9.5 (2019-11-01)

	Fixed, missing dependencies

0.9.4 (2019-11-01)

	Fixed #21 that zope.sqlalchemy 1.2 [https://pypi.org/project/zope.sqlalchemy/#id1] rename a class

	[ADD] user-identity blok. Splitted anyblok_pyramid/auth blok to
separate authentication fields from user identity fields

0.9.3 (2019-06-23)

	Refactored unittest and helpper from nose to pytest

0.9.2 (2018-08-10)

	Fix get_acl method

	Add max age for static path, issue #13

0.9.1 (2018-05-30)

	Fix get_acl method

	Update logging output

0.9.0 (2018-02-27)

	[FIX] commited session with pyramid

	[ADD] Authentication configuration

	[ADD] auth blok

	[ADD] auth-password blok

	[ADD] authorization blok

	[FIX] console script whith gunicorn and wsgi server
Put all the serveur in loadwithoutmigration=True, AnyBlok can add some
lock during the migration and must do in specal action

0.8.2 (2017-12-23)

	[FIX] anyblok cache invalidation

	[FIX] replace SQLAlchemy deprecated extension by session events

0.8.1 (2017-11-28)

	[REF] replace the overload of init_registry by init_registry_with_bloks

0.8.0 (2017-10-14)

	[DEL] Remove configuration group definition preload

	[REF] use configuration_post_load function to initialize services

0.7.2 (2017-10-18)

	[ADD] Some apdater to convert to json

	datetime_adapter

	date_adapter

	decimal_adapter

	uuid_adapter

	bytes_adapter

0.7.1 (2016-12-05)

	[FIX] add pluggins in autoload configuration for unittest

	[FIX] type replace asset by assert

	[FIX] fix gunicorn script, load the plugins config part

0.7.0 (2016-07-11)

	[FIX] Adapte for new release of AnyBlok 0.9.0

	[Add] Plugin get_db_name

	[ADD] some unittest

	[REF] Update doc

0.6.3 (2016-06-20)

	[FIX] bad release for 0.6.2

0.6.2 (2016-06-20)

	[FIX] utf-8 encoding in setup, need for readthedocs

	[REF] move from bitbucket (mercurial) to github (git)

0.6.1 (2016-04-18)

	[FIX] for Python < 3.5

0.6.0 (2016-04-18)

Warning

This version break the compatibility with previous version. The goal
is to use all the functionnality of pyramid, and give the tools to make
the bind with AnyBlok easily

	
	[REM] remove old Controller declarations:

	
	Declarations.Pyramid

	Declarations.PyramidHTTP

	Declarations.PyramidJSONRPC

	Declarations.PyramidXMLRPC

	[ADD] add anyblok request property

registry = request.anyblok.registry

	[ADD] installed_blok predicate for route and view

@view_config(route_name='hello', installed_blok='my-blok')
def say_hello(request):
 ...

	[ADD] need_anyblok_registry predicate for route and view

@view_config(route_name='hello', need_anyblok_registry=True)
def say_hello(request):
 ...

0.5.3 (2016-03-17)

	[REF] Preload database, add log and check if the database exist before load
it

	[FIX] catch simple exception to reput in real rpc exception

0.5.2 (2016-01-15)

	[FIX] use anyblok parser for config with gunicorn

	[REF] entry point init is now in anyblok

0.5.1 (2016-01-08)

	[REF] Adapt with the new version of AnyBlok

	[IMP] Add new entry point to load function before load AnyBlok bloks

0.5.0 (2016-01-07)

	[ADD] pyramid_pm and zope.sqlalchemy to isolate each controller call

0.4.1 (2015-10-9)

	[ADD] console script, implementation with gunicorn only

	[ADD] wsgi script to give un app for wsgi server

0.4.0 (2015-08-25)

Warning

this version can not be capable with the previous version

Note

Works only with AnyBlok 0.5.1 and after

	[REF] Add entry point to add new pyramid includeme and settings

	[DEL] properties decorator, it is useless because pyramid have a better
behaviour

	[REF] add workingset to define overwritable callback used for application,
no for the blok, add first callback, get_registry

	[REF] unit test cause of new version of AnyBlok 0.5.0

	[FIX] unit test case, update controller to unload the declaration when
BlokManager are unloaded

0.3.2 (2015-06-22)

	[REF] cause of upgrade version of AnyBlok 0.4.0

0.3.1 (2015-05-04)

	[FIX] default value for beaker, None is better than ‘’

0.3.0 (2015-05-04)

	[IMP] console script argsparse for pyramid and beaker

	[ADD] MANIFEST.in

	[FIX] script cause of remove logging configuration from AnyBlok

0.2.0 (2015-03-15)

	[ADD] configurator callable

	[REF] Adapt the import of python module of the blok, cause of the change in
AnyBlok version 0.2.2

0.1.0 (2015-02-07)

Main version of AnyBlok / Pyramid. You can with this version

	Declare Views / Routes for application

	
	Declare controller (Views / Routes) which depend of the installation of bloks

	
	XHR

	JsonRPC

	XmlRPC

	Possibility to check some property as authentification

	Possibility to define properties check

Mozilla Public License Version 2.0

1. Definitions

1.1. “Contributor”

Means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.

1.2. “Contributor Version”

Means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributor’s Contribution.

1.3. “Contribution”

Means Covered Software of a particular Contributor.

1.4. “Covered Software”

Means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions thereof.

1.5. “Incompatible With Secondary Licenses”

Means:

	
	That the initial Contributor has attached the notice described in Exhibit B

	to the Covered Software; or

	
	That the Covered Software was made available under the terms of version 1.1

	or earlier of the License, but not also under the terms of a Secondary
License.

1.6. “Executable Form”

Means any form of the work other than Source Code Form.

1.7. “Larger Work”

Means a work that combines Covered Software with other material, in a separate
file or files, that is not Covered Software.

1.8. “License”

Means this document.

1.9. “Licensable”

Means having the right to grant, to the maximum extent possible, whether at the
time of the initial grant or subsequently, any and all of the rights conveyed
by this License.

1.10. “Modifications”

Means any of the following:

	
	Any file in Source Code Form that results from an addition to, deletion from,

	or modification of the contents of Covered Software; or

	Any new file in Source Code Form that contains any Covered Software.

1.11. “Patent Claims” of a Contributor

Means any patent claim(s), including without limitation, method, process, and
apparatus claims, in any patent Licensable by such Contributor that would be
infringed, but for the grant of the License, by the making, using, selling,
offering for sale, having made, import, or transfer of either its Contributions
or its Contributor Version.

1.12. “Secondary License”

Means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public License,
Version 3.0, or any later versions of those licenses.

1.13. “Source Code Form”

Means the form of the work preferred for making modifications.

1.14. “You” (or “Your”)

Means an individual or a legal entity exercising rights under this License.
For legal entities, “You” includes any entity that controls, is controlled by,
or is under common control with You. For purposes of this definition, “control”
means (a) the power, direct or indirect, to cause the direction or management
of such entity, whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial ownership of such
entity.

2. License Grants and Conditions

2.1. Grants

Each Contributor hereby grants You a world-wide, royalty-free, non-exclusive
license:

	
	Under intellectual property rights (other than patent or trademark)

	Licensable by such Contributor to use, reproduce, make available, modify,
display, perform, distribute, and otherwise exploit its Contributions,
either on an unmodified basis, with Modifications, or as part of a Larger
Work; and

	
	Under Patent Claims of such Contributor to make, use, sell, offer for sale,

	have made, import, and otherwise transfer either its Contributions or its
Contributor Version.

2.2. Effective Date

The licenses granted in Section 2.1 with respect to any Contribution become
effective for each Contribution on the date the Contributor first distributes
such Contribution.

2.3. Limitations on Grant Scope

The licenses granted in this Section 2 are the only rights granted under this
License. No additional rights or licenses will be implied from the distribution
or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:

	For any code that a Contributor has removed from Covered Software; or

	
	For infringements caused by: (i) Your and any other third party’s

	modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or

	
	Under Patent Claims infringed by Covered Software in the absence of its

	Contributions.

This License does not grant any rights in the trademarks, service marks, or
logos of any Contributor (except as may be necessary to comply with the notice
requirements in Section 3.4).

2.4. Subsequent Licenses

No Contributor makes additional grants as a result of Your choice to distribute
the Covered Software under a subsequent version of this License (see Section
10.2) or under the terms of a Secondary License (if permitted under the terms
of Section 3.3).

2.5. Representation

Each Contributor represents that the Contributor believes its Contributions
are its original creation(s) or it has sufficient rights to grant the rights to
its Contributions conveyed by this License.

2.6. Fair Use

This License is not intended to limit any rights You have under applicable
copyright doctrines of fair use, fair dealing, or other equivalents.

2.7. Conditions

Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.

3. Responsibilities

3.1. Distribution of Source Form

All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under the
terms of this License. You must inform recipients that the Source Code Form of
the Covered Software is governed by the terms of this License, and how they
can obtain a copy of this License. You may not attempt to alter or restrict the
recipients’ rights in the Source Code Form.

3.2. Distribution of Executable Form

If You distribute Covered Software in Executable Form then:

	
	Such Covered Software must also be made available in Source Code Form, as

	described in Section 3.1, and You must inform recipients of the Executable
Form how they can obtain a copy of such Source Code Form by reasonable
means in a timely manner, at a charge no more than the cost of
distribution to the recipient; and

	
	You may distribute such Executable Form under the terms of this License, or

	sublicense it under different terms, provided that the license for the
Executable Form does not attempt to limit or alter the recipients’ rights
in the Source Code Form under this License.

3.3. Distribution of a Larger Work

You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for the
Covered Software. If the Larger Work is a combination of Covered Software with
a work governed by one or more Secondary Licenses, and the Covered Software is
not Incompatible With Secondary Licenses, this License permits You to
additionally distribute such Covered Software under the terms of such Secondary
License(s), so that the recipient of the Larger Work may, at their option,
further distribute the Covered Software under the terms of either this License
or such Secondary License(s).

3.4. Notices

You may not remove or alter the substance of any license notices (including
copyright notices, patent notices, disclaimers of warranty, or limitations of
liability) contained within the Source Code Form of the Covered Software,
except that You may alter any license notices to the extent required to remedy
known factual inaccuracies.

3.5. Application of Additional Terms

You may choose to offer, and to charge a fee for, warranty, support, indemnity
or liability obligations to one or more recipients of Covered Software.
However, You may do so only on Your own behalf, and not on behalf of any
Contributor. You must make it absolutely clear that any such warranty, support,
indemnity, or liability obligation is offered by You alone, and You hereby
agree to indemnify every Contributor for any liability incurred by such
Contributor as a result of warranty, support, indemnity or liability terms You
offer. You may include additional disclaimers of warranty and limitations of
liability specific to any jurisdiction.

4. Inability to Comply Due to Statute or Regulation

If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code
they affect. Such description must be placed in a text file included with all
distributions of the Covered Software under this License. Except to the extent
prohibited by statute or regulation, such description must be sufficiently
detailed for a recipient of ordinary skill to be able to understand it.

5. Termination

5.1.

The rights granted under this License will terminate automatically if You fail
to comply with any of its terms. However, if You become compliant, then the
rights granted under this License from a particular Contributor are reinstated
(a) provisionally, unless and until such Contributor explicitly and finally
terminates Your grants, and (b) on an ongoing basis, if such Contributor fails
to notify You of the non-compliance by some reasonable means prior to 60 days
after You have come back into compliance. Moreover, Your grants from a
particular Contributor are reinstated on an ongoing basis if such Contributor
notifies You of the non-compliance by some reasonable means, this is the first
time You have received notice of non-compliance with this License from such
Contributor, and You become compliant prior to 30 days after Your receipt of
the notice.

5.2.

If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims,
and cross-claims) alleging that a Contributor Version directly or indirectly
infringes any patent, then the rights granted to You by any and all
Contributors for the Covered Software under Section 2.1 of this License
shall terminate.

5.3.

In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.

6. Disclaimer of Warranty

Warning

Covered Software is provided under this License on an “as is” basis,
without warranty of any kind, either expressed, implied, or statutory,
including, without limitation, warranties that the Covered Software is
free of defects, merchantable, fit for a particular purpose or
non-infringing. The entire risk as to the quality and performance of the
Covered Software is with You. Should any Covered Software prove defective
in any respect, You (not any Contributor) assume the cost of any necessary
servicing, repair, or correction. This disclaimer of warranty constitutes
an essential part of this License. No use of any Covered Software is
authorized under this License except under this disclaimer.

7. Limitation of Liability

Warning

Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from
such party’s negligence to the extent applicable law prohibits such
limitation. Some jurisdictions do not allow the exclusion or limitation of
incidental or consequential damages, so this exclusion and limitation may
not apply to You.

8. Litigation

Any litigation relating to this License may be brought only in the courts of a
jurisdiction where the defendant maintains its principal place of business and
such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall
prevent a party’s ability to bring cross-claims or counter-claims.

9. Miscellaneous

This License represents the complete agreement concerning the subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not be used to construe
this License against a Contributor.

10. Versions of the License

10.1. New Versions

Mozilla Foundation is the license steward. Except as provided in Section 10.3,
no one other than the license steward has the right to modify or publish new
versions of this License. Each version will be given a distinguishing version
number.

10.2. Effect of New Versions

You may distribute the Covered Software under the terms of the version of the
License under which You originally received the Covered Software, or under the
terms of any subsequent version published by the license steward.

10.3. Modified Versions

If you create software not governed by this License, and you want to create a
new license for such software, you may create and use a modified version of
this License if you rename the license and remove any references to the name of
the license steward (except to note that such modified license differs from
this License).

10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses

If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the notice
described in Exhibit B of this License must be attached.

Exhibit A - Source Code Form License Notice

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this file,
You can obtain one at http://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.

Note

You may add additional accurate notices of copyright ownership.

Exhibit B - “Incompatible With Secondary Licenses” Notice

This Source Code Form is “Incompatible With Secondary Licenses”, as defined
by the Mozilla Public License, v. 2.0.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 anyblok_pyramid	

 	
 	
 anyblok_pyramid.adapter	

 	
 	
 anyblok_pyramid.bloks.auth	

 	
 	
 anyblok_pyramid.bloks.auth.exceptions	

 	
 	
 anyblok_pyramid.bloks.auth.role	

 	
 	
 anyblok_pyramid.bloks.auth.user	

 	
 	
 anyblok_pyramid.bloks.auth.views	

 	
 	
 anyblok_pyramid.bloks.authorization	

 	
 	
 anyblok_pyramid.bloks.authorization.authorization	

 	
 	
 anyblok_pyramid.bloks.authorization.exceptions	

 	
 	
 anyblok_pyramid.bloks.authorization.user	

 	
 	
 anyblok_pyramid.bloks.password	

 	
 	
 anyblok_pyramid.bloks.password.user	

 	
 	
 anyblok_pyramid.bloks.pyramid	

 	
 	
 anyblok_pyramid.pyramid_config	

 	
 	
 anyblok_pyramid.scripts	

 	
 	
 anyblok_pyramid.security	

 	
 	
 anyblok_pyramid.tests.testcase	

Index

 A
 | L
 | R

A

 	
 	anyblok_pyramid.adapter (module)

 	anyblok_pyramid.bloks.auth (module)

 	anyblok_pyramid.bloks.auth.exceptions (module)

 	anyblok_pyramid.bloks.auth.role (module)

 	anyblok_pyramid.bloks.auth.user (module)

 	anyblok_pyramid.bloks.auth.views (module)

 	anyblok_pyramid.bloks.authorization (module)

 	anyblok_pyramid.bloks.authorization.authorization (module)

 	
 	anyblok_pyramid.bloks.authorization.exceptions (module)

 	anyblok_pyramid.bloks.authorization.user (module)

 	anyblok_pyramid.bloks.password (module)

 	anyblok_pyramid.bloks.password.user (module)

 	anyblok_pyramid.bloks.pyramid (module)

 	anyblok_pyramid.pyramid_config (module)

 	anyblok_pyramid.scripts (module)

 	anyblok_pyramid.security (module)

 	anyblok_pyramid.tests.testcase (module)

L

 	
 	login() (in module anyblok_pyramid.bloks.auth.views)

 	
 	logout() (in module anyblok_pyramid.bloks.auth.views)

R

 	
 	RecursionRoleError

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 AnyBlok / Pyramid’s documentation

 		
 Front Matter

 		
 Project Homepage

 		
 Project Status

 		
 Installation

 		
 Unit Test

 		
 Dependencies

 		
 Contributing (hackers needed!)

 		
 Author

 		
 Contributors

 		
 Bugs

 		
 MEMENTO

 		
 Add route, view, … in pyramid config

 		
 By includeme

 		
 By blok

 		
 Get AnyBlok registry in view

 		
 Define view which are used only if one blok is installed

 		
 Define the name of the database

 		
 Define an AnyBlok init function

 		
 Define the db name in the request path

 		
 Authentication and authorization

 		
 JSON adapter

 		
 AnyBlok / Pyramid framework

 		
 anyblok_pyramid.pyramid_config

 		
 pyramid_config.settings

 		
 pyramid_config.includeme

 		
 anyblok_pyramid.adapter module

 		
 anyblok_pyramid.scripts module

 		
 anyblok_pyramid.security module

 		
 Bloks

 		
 Blok Auth

 		
 How to use it

 		
 User

 		
 Role

 		
 Views

 		
 Configuration

 		
 Exceptions

 		
 Blok Password

 		
 How to use it

 		
 User

 		
 Blok Authorization

 		
 How to use it

 		
 User

 		
 Authorization

 		
 Exceptions

 		
 Blok Pyramid

 		
 Pyramid Blok

 		
 OpenID Connect

 		
 Requirements

 		
 Configuration

 		
 Pyramid

 		
 Pyramid model

 		
 OIDC utility

 		
 Helper for unittest

 		
 PyramidTestCase

 		
 PyramidDBTestCase

 		
 PyramidBlokTestCase

 		
 CHANGELOG

 		
 1.2.0 (2020-12-03)

 		
 1.1.1 (2020-10-16)

 		
 1.1.0 (2020-08-31)

 		
 1.0.0 (2020-05-12)

 		
 0.9.5 (2019-11-01)

 		
 0.9.4 (2019-11-01)

 		
 0.9.3 (2019-06-23)

 		
 0.9.2 (2018-08-10)

 		
 0.9.1 (2018-05-30)

 		
 0.9.0 (2018-02-27)

 		
 0.8.2 (2017-12-23)

 		
 0.8.1 (2017-11-28)

 		
 0.8.0 (2017-10-14)

 		
 0.7.2 (2017-10-18)

 		
 0.7.1 (2016-12-05)

 		
 0.7.0 (2016-07-11)

 		
 0.6.3 (2016-06-20)

 		
 0.6.2 (2016-06-20)

 		
 0.6.1 (2016-04-18)

 		
 0.6.0 (2016-04-18)

 		
 0.5.3 (2016-03-17)

 		
 0.5.2 (2016-01-15)

 		
 0.5.1 (2016-01-08)

 		
 0.5.0 (2016-01-07)

 		
 0.4.1 (2015-10-9)

 		
 0.4.0 (2015-08-25)

 		
 0.3.2 (2015-06-22)

 		
 0.3.1 (2015-05-04)

 		
 0.3.0 (2015-05-04)

 		
 0.2.0 (2015-03-15)

 		
 0.1.0 (2015-02-07)

 		
 Mozilla Public License Version 2.0

 		
 1. Definitions

 		
 1.1. “Contributor”

 		
 1.2. “Contributor Version”

 		
 1.3. “Contribution”

 		
 1.4. “Covered Software”

 		
 1.5. “Incompatible With Secondary Licenses”

 		
 1.6. “Executable Form”

 		
 1.7. “Larger Work”

 		
 1.8. “License”

 		
 1.9. “Licensable”

 		
 1.10. “Modifications”

 		
 1.11. “Patent Claims” of a Contributor

 		
 1.12. “Secondary License”

 		
 1.13. “Source Code Form”

 		
 1.14. “You” (or “Your”)

 		
 2. License Grants and Conditions

 		
 2.1. Grants

 		
 2.2. Effective Date

 		
 2.3. Limitations on Grant Scope

 		
 2.4. Subsequent Licenses

 		
 2.5. Representation

 		
 2.6. Fair Use

 		
 2.7. Conditions

 		
 3. Responsibilities

 		
 3.1. Distribution of Source Form

 		
 3.2. Distribution of Executable Form

 		
 3.3. Distribution of a Larger Work

 		
 3.4. Notices

 		
 3.5. Application of Additional Terms

 		
 4. Inability to Comply Due to Statute or Regulation

 		
 5. Termination

 		
 5.1.

 		
 5.2.

 		
 5.3.

 		
 6. Disclaimer of Warranty

 		
 7. Limitation of Liability

 		
 8. Litigation

 		
 9. Miscellaneous

 		
 10. Versions of the License

 		
 10.1. New Versions

 		
 10.2. Effect of New Versions

 		
 10.3. Modified Versions

 		
 10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses

 		
 Exhibit A - Source Code Form License Notice

 		
 Exhibit B - “Incompatible With Secondary Licenses” Notice

_static/up.png

_static/up-pressed.png

